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ABSTRACT: A cross-electrophile coupling reaction of epoxides
and (hetero)aryl iodides that operates via the merger of three
catalytic cycles involving a Ni-, Ti-, and organic photoredox catalyst
has been developed. Three distinct classes of epoxides, styrene
oxides, cyclic epoxides, and terminal aliphatic epoxides, all undergo
coupling in moderate to good yield and high regioselectivity with
the use of three different nitrogen-based ligands for Ni under
otherwise identical reaction conditions. The mild reaction
conditions accommodate a broad scope of abundant and complex
coupling partners. Mechanistic studies suggest that when styrene
oxides are employed radical intermediates are involved via Ti-
radical ring-opening of the epoxide. Conversely, for terminal aliphatic epoxides, involvement of an iodohydrin intermediate enables
the formation of the unexpected linear product.

KEYWORDS: epoxides, arylation, cross-electrophile coupling, photoredox catalysis, nickel catalysis, titanium catalysis, radical chemistry,
photochemistry

In recent years, Ni-photoredox catalysis has emerged as a
powerful approach for forging C(sp2)−C(sp3) bonds that

are otherwise challenging to prepare via traditional cross-
coupling strategies.1 Recently, researchers have applied Ni-
photoredox catalysis to the area of cross-electrophile reactions,
enabling the coupling of organohalides in the absence of a
stoichiometric metal reductant (Scheme 1A).2,3 Most of the
photoredox-assisted reductive cross-coupling (PARC) reac-
tions rely on the coupling of aryl and alkyl halide electrophiles,
with the exception of reports from the Amgoune lab using
amides as the C(sp2)-component3l and from the Molander lab
using Katritzky salts as the C(sp3)-component.3g Notably, the
use of distinct and abundant aliphatic electrophile classes could
afford new PARC reactions and potentially broaden the scope
of cross-electrophile couplings. Epoxides, in particular, are
important and versatile building blocks in organic synthesis,4

but have seen limited application as partners in traditional
cross-coupling reactions.5 For these reasons, and based on our
interest in cross-coupling reactions with 3-membered ring
heterocycles,6 we questioned whether a photoredox-assisted
coupling approach could be utilized to develop a general, mild,
and selective cross-electrophile coupling of epoxides.
Weix and co-workers have previously described a Ni-

catalyzed cross-electrophile coupling reaction of epoxides and
aryl halides using Mn as a stoichiometric reductant (Scheme
1B).7 In combination with a Ti co-catalyst to assist with ring-
opening, the reaction proceeds efficiently for cyclic epoxides.
The use of terminal aliphatic epoxides resulted in mixtures of
regioisomers favoring the branched isomer in low to moderate

yield. These results prompted their identification of an
alternative strategy featuring distinct reaction conditions for
the coupling of terminal aliphatic epoxides via the intermediacy
of an iodohydrin, which delivers the linear isomer selectively.
For both activation strategies, styrene oxides were challenging
substrates as they afforded low yield and low regioselectivity.
Subsequently, Yamamoto and co-workers developed an
asymmetric cross-electrophile coupling of styrene oxide
derivatives possessing an ethyl alcohol-directing group;
however, reactions of unsubstituted styrene oxides resulted in
low yield and low regioselectivity.8 Hence, the development of
an approach for the selective cross-coupling of styrene oxides is
an unmet need.
Here, we demonstrate that the combination of a Ni-, Ti-,

and organic photoredox catalyst promotes highly regioselective
and high-yielding cross-coupling of three distinct classes of
epoxides: styrenyl-, cyclic-, and terminal aliphatic epoxides
(Scheme 1C). Key to this generality is the identification of
distinct ligands (holding the reaction conditions otherwise
identical) that suppress undesired homocoupling and epoxide
rearrangement pathways for each class of epoxides.6b,9 While
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most Ni-photoredox reactions have been restricted to a single
ligand, 4,4′-di-tert-butyl-2,2′-dipyridyl (dtbbpy), thereby limit-
ing opportunities for reaction optimization and translation to
enantioselective reactions, this study represents a relatively rare
example of a Ni-photoredox reaction that shows broad ligand
response.3f,10 Notably, under otherwise similar conditions,
opposite regiochemical outcomes were observed for the cases
of styrenyl and terminal aliphatic epoxides. Mechanistic studies
are presented to explain these observations.
Our investigation began by examining the Ni-photoredox

coupling of 4-iodotoluene with three representatives of distinct
epoxide classes: styrene oxide 1a, cyclohexene oxide 2a, and 1-
dodecene oxide 3a (Table 1). Gansaüer and Shi have recently
reported Ti-catalyzed reductive reactions of aliphatic epoxides
in the presence of an Ir(dF-CF3-ppy)2(dtbbpy)PF6 and
4CzIPN photocatalyst, respectively.11 Photophysical studies
by both groups have shown that the active Ti(III)-complex can
be formed via single electron transfer (SET) from a
photoredox catalyst, thereby obviating the use of stoichio-
metric heterogeneous reductants. On the basis of these results
and the precedent from Weix, we selected a starting set of
reaction conditions: 5 mol % 4CzIPN as a photocatalyst, 10
mol % NiBr2·diglyme as a precatalyst, 20 mol % dtbbpy as a
ligand, 5 equiv Et3N as a soluble reductant, and 25 mol %
Cp2TiCl2

12 as a co-catalyst. For styrene oxide 1a, the branched
coupling product (4a) was formed as the sole regioisomer in
33% yield (entry 1). Conversely, the linear coupling product
(6a) was formed selectively from 3a in 38% yield under the
same conditions (entry 3). Use of cyclohexene oxide 2a
resulted in the formation of 24% yield of the trans coupling
product 5a (entry 2). However, the formation of various side
products was observed under these reaction conditions. Biaryl

(4,4′-dimethyl-1,1′-biphenyl) was detected in 14%, 24%, and
40% yield for the reaction of epoxides 1a−3a, respectively. The
formation of biaryl is a common side reaction in cross-
electrophile coupling reactions. For 1a and 3a, the
corresponding aldehydes, formed via Ti/Ni-catalyzed isomer-
ization, were also detected in 20% and 12% yield, respectively.
We sought to evaluate whether the use of an alternate ligand

could be used to suppress these side pathways to improve the
efficiency of the epoxide coupling. From our screening studies,
three ligands emerged as successful: with phenanthroline

Scheme 1. Cross-Electrophile Coupling3,7 Table 1. Optimization of the Reaction Parametersa

aReactions were conducted on a 0.05 mmol scale. n/a = not
applicable. bReaction time with 1a = 24 h; with 2a = 36 h; and with
3a = 60 h. cBranched (b):linear (l) as determined by gas
chromatography (GC). dAldehyde was formed via isomerization of
the epoxide. e4,4′-Dimethyl-1,1′-biphenyl. fGC yields were calibrated
using pentadecane as an internal standard. GC yield of the major
isomer is shown. gMeCN was used as solvent. h10 mol % of L2 was
used.
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ligand BPhen (L1), reactions of 1a and 3a resulted in low
reaction yield with significant generation of biaryl and
isomerization byproducts (entries 4 and 6). However, reaction
of 2a with L1 generated the desired coupling product 5a in
90% yield with minor side product formation (entry 5). With
tridentate ligand t-Bu-terpy (L2), 3a afforded the linear
coupling product 6a in 85% yield with trace amounts of the
reaction byproducts (entry 9). The reactions of 1a and 2a,
however, resulted in low yields under the reaction conditions
with L2 (entries 7 and 8). Finally, using amidine ligand L3, the
branched coupling product 4a was obtained in high yield and
selectivity from epoxide 1a (entry 10). Interestingly, 2a and 3a
were poor-performing substrates under the reaction conditions
with L3 (entries 11 and 12). Control studies for each class of

epoxides, with their respective ligand, indicated that all of the
reaction parameters were necessary (entries 13−15 and
Supporting Information (SI)).
A few general considerations emerge from these optimiza-

tion studies. First, linear isomeric product 6a was obtained
from aliphatic epoxide 3a independent of the ligand identity,
whereas the branched isomeric product 4a was formed from
styrene oxide 1a, suggestive of a change in mechanism (vide
inf ra). Second, dtbbpy was not optimal for any epoxide class
but showed intermediate reactivity in each case, an illustration
of how it may have emerged as the most general ligand in Ni-
photoredox catalysis (entries 1−3). While our future efforts
will be directed at gaining a detailed understanding of the
origin of ligand specificity in these reactions, it is clear from the

Table 2. Scope of the Cross-Electrophile Coupling of Epoxidesa

aIsolated yields are reported based on an average of two runs (0.2 mmol scale). b:l = branched:linear ratio. Unless otherwise noted, the
regioselectivity is ≥20:1. Reaction time with 1 = 24 h; with 2 = 36 h; and with 3 = 60 h. b1 mmol scale. cMeCN was used instead of DMF. d10 mol
% of L3 was used. eb:l = 1:17. fdtbbpy was used instead of L2. gb:l = 1:11.4. hb:l = 1:15. iSingle diastereomer. jb:l = 1:7.3; regioisomers are
separable.
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data that use of a tridentate ligand suppresses biaryl formation,
consistent with literature reports on Ni cross-electrophile
coupling reactions.13 However, t-Bu-terpy is only effective for
coupling with epoxide 3a, presumably because the ligand is too
hindered to facilitate productive bond formation in the cases of
epoxides 1a and 2a, which both afford secondary as compared
to primary C(sp3)−C(sp2) bonds. In the case of styrene oxide
1a, amidine ligand L3 is optimal instead. While amidine
ligands have been employed for Ni-catalyzed reductive
coupling reactions,14 to the best of our knowledge, they have
not been used in Ni-photoredox catalysis. We propose that
amidine ligand L3 is effective because it affords an electron-
rich Ni-complex that suppresses Ni-mediated isomerization of
1a. Among the three epoxide classes, cyclohexene oxide 2a
represents the most challenging from the perspective of C−C
reductive elimination. As such, we expect that the enhanced π-
acidity of BPhen could accelerate reduction steps at Ni such as
reductive elimination, which may be responsible for its role in
this coupling reaction.15

Next, the scope of the transformation was investigated
(Table 2), beginning with an examination of different styrene
oxides (1). Under the standard reaction conditions using L3,
both electron-rich and electron-deficient aryl iodides were well
tolerated, affording branched products 4a−e in good yields.
Employment of an aryl iodide possessing a BPin substituent
that can be further functionalized by traditional cross-coupling
methods produced 4f in 65% yield. Heteroaryl iodides, such as
2-fluoro-5-iodopyridine and 5-iodoindole, afforded the corre-
sponding alcohols 4g and 4h in moderate yield. In varying the
styrene oxide framework, we found that sterically hindered 2-
(o-tolyl)oxirane 1k underwent coupling regioselectively, albeit
in 23% yield (4k). Coupling of electronically diverse styrene
oxides (1l−1n) with a range of aryl iodides generated the
corresponding branched products in moderate to good yields
(4l−n). Finally, heterocyclic styrene oxide 1o produced 4o in
43% yield under the reaction conditions.
In exploring the scope of cyclic epoxides using ligand L1, we

found that cyclohexene oxide reacted with electron-rich and
electron-deficient aryl iodides, resulting in trans products 5a−e
in 40−94% yield. Of note are products 5d and 5e, since their
synthesis via traditional ring-opening of cyclohexene oxide with
Grignard reagents would lead to low chemoselectivity due to
the pendant ester and ketone functionalities. In addition, 3-
BPin-aryl iodide and heteroaryl iodides coupled well with
cyclohexene oxide (5f−h). Notably, the 5-membered cyclic
epoxides, such as cyclopentene oxide and epoxy tetrahydro-
furan, were high-performing substrates (5i−j). A 7-membered
cyclic epoxide 2k was also amenable to this cross-coupling
reaction (5k).
Next, the scope of terminal aliphatic epoxides was examined

with L2. The reaction of electronic rich, neutral, and heteroaryl
iodides with 1-dodecene oxide provided linear products (6a−
c) in high yield and regioselectivity. Coupling of sterically
hindered 2-iodotoluene with 1-hexene oxide resulted in no
reaction; however, using less sterically hindered dtbbpy in
place of L2 afforded product 6e in 56% yield. Benzyl epoxide
reacted well under the reaction conditions, producing 6f in
66% yield, with slightly diminished regioselectivity (b:l =
1:11.4). Employment of aliphatic epoxide 3g, possessing
sensitive olefin functionality, generated coupling product 6g
in 31% yield. Epoxides possessing glycidyl ether, acetal, and
phthalimide functional groups were well tolerated (6h−j),

highlighting the broad functional group tolerance of the
method.
Notably, this protocol was amenable to late-stage coupling

as showcased by the following reactions. Protease inhibitor
precursor16 3k produced amino alcohol 6k in 48% yield as a
single diastereomer under the reaction conditions. Glycidyl
estrone ether17 3l reacted smoothly, producing 6l in 52% yield
and 1:7.3 b:l regioselectivity. Bisphenol A glycidyl ether, an
industrial resin,18 was subjected to the reaction conditions, af-
fording 6m in 23% yield.
The mechanism of the reaction was interrogated next. Given

the difference in regioselectivity for styrenyl and aliphatic
epoxides, tandem mechanistic experiments were performed
with these two substrate classes. Control experiments for all
classes of epoxides revealed that the Ti-catalyst was an
important parameter (Table 1, entries 13−15). Thus, we
considered radical ring-opening of the epoxide via SET with
the Ti-catalyst as a possible mechanistic pathway.12 To probe
this possibility further, stereochemical studies were conducted
involving enantioenriched styrene oxide 7 and aliphatic
epoxide 10 (Scheme 2A). Subjecting 7 to the reaction
conditions resulted in coupling product 8 with erosion of the
stereocenter, supporting the formation of radical intermediate
9. Conversely, 10 generated product 11 with conservation of ee
under the reaction conditions, suggesting that reversible Ti-
mediated ring-opening, leading to the primary alkyl radical 12,
is highly unlikely (9 → 12).12

Since arylation occurs at the terminal end of the aliphatic
epoxide, we considered that an SN2 oxidative addition (OA)

Scheme 2. Mechanistic Studies
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mechanism of Ni(0) with the epoxide could instead be
operative.5i To probe if epoxide ring-opening occurs via Ni-
activation or a radical pathway, radical clock substrate 13 was
tested (Scheme 2B).19 If an SN2-type OA by Ni(0) were
occurring, then 14 and/or the trans diastereomer of 15 would
be expected as the major product(s).5i However, upon
exposure of 13 to the reaction conditions, the cyclization
product 15 was formed as a mixture of cis/trans isomers,
providing evidence for the formation of a radical species at the
terminal position of the epoxide. Next, a control study was
conducted by replacing Cp2TiCl2 with a catalytic amount of
NaI (Scheme 2C).7a The reaction of 3a under these modified
conditions resulted in significant yield of 6a, suggesting the
intermediacy of an iodohydrin (16).7 Furthermore, submission
of independently synthesized iodohydrin 16 to the standard
reaction conditions generated linear product 6a in 34% yield.
Hence, for aliphatic epoxides, formation of an iodohydrin
intermediate is highly probable.
Based on the above mechanistic studies, two distinct

mechanisms are proposed for styrenyl and aliphatic epoxides
(Scheme 3). In both cases, irradiation of 4CzIPN (PC) under
blue light generates photoexcited 4CzIPN*,11 which undergoes
oxidative quenching with Ti(IV) to generate Ti(III) (E1/2
PC•+/PC* = −1.18 V vs SCE,20 E1/2 Ti(IV)/Ti(III) = −0.57
V vs SCE11). This quenching pathway was supported by
Stern−Volmer quenching studies (see SI) and recent literature
reports. For styrene oxides, the formed Ti(III) species engages
in a radical ring-opening event with 1 to form intermediate 9.
This intermediate reacts with the Ni(II) complex 1821 to form
branched Ni(III) intermediate 19. Facile reductive elimination
of 19 results in the branched coupling product 4 and Ni(I)
intermediate 20. Complex 20 undergoes reduction with
4CzIPN•− (E1/2 PC/PC

•− = −1.24 V vs SCE,20 E1/2 Ni(I)/
Ni(0) = −1.17 V vs SCE22), which was generated via reductive
quenching with triethylamine (Et3N) (E1/2 PC*/PC

•− = +1.43
V vs SCE,20 E1/2 Et3N

•+/Et3N = +0.93 V vs SCE23) to turn
over the Ni-cycle and the photocatalytic cycle.23 The
mechanism for cyclic epoxides is speculated to be analogous
to that of styrene oxides based on current (see SI) and
previous mechanistic studies.7b

For terminal aliphatic epoxides, formation of the iodohydrin
intermediate 16 is proposed to occur via the nucleophilic
addition of in situ generated iodide with the aliphatic epoxide

(3). Catalytic amounts of iodide are likely formed via
reduction of Ni(I)−I intermediate 20 with 4CzIPN•−. Next,
the iodohydrin intermediate 16 participates in a halogen atom
abstraction24 (HAA) event with Ti(III) to generate primary
alkyl radical 12,25 which undergoes radical addition to Ni(II)
complex 18 to form linear Ni(III) species 19. Subsequent
reductive elimination of the latter generates the linear coupling
product 6. An alternative pathway, where the iodohydrin
intermediate is formed via Lewis acid-mediated iodide ring-
opening of the epoxide with Ti, cannot be ruled out (see SI).
In conclusion, we have developed a photocatalytic cross-

electrophile coupling of three different classes of epoxides with
(hetero)aryl iodides. The transformation exhibits interesting
ligand effects, where a different amine-based ligand was
required for the efficient coupling of a particular class of
epoxide. The scope of the transformation was found to be
general, as a range of electronically and sterically diverse
epoxides and aryl iodides coupled efficiently. Notably, reaction
of styrene epoxides led to the branched coupling products
selectively, whereas terminal aliphatic epoxides generated the
unexpected linear isomer under otherwise similar reaction
conditions. Mechanistic studies revealed that linear selectivity
from aliphatic epoxides arises due to the involvement of an
iodohydrin intermediate. In contrast, for styrene epoxides,
branched products are formed via Ti-mediated radical epoxide
ring-opening. Based on the broad ligand response of this
transformation, future efforts will be focused on understanding
ligand effects for related Ni-photoredox reactions.
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